C language books in hindi pdf


 

Without learning “C” Language, you can't learn any. Modern Programming C in Hindi. This book is dedicated to those who really wants to be a. ProfessionAl. C LANGUAGE IN Hindi c++terney.info c++ hindi c++ hindi. The book “ LEARN SANSKRIT IN 30 DAYS ” book enabling the Hindi student to. PDF Drive is your search engine for PDF files. As of today we have 78,, eBooks for you to download for free. No annoying ads, no download limits, enjoy .

Author:RUBIE CHESNUTT
Language:English, Spanish, Japanese
Country:Chile
Genre:Academic & Education
Pages:585
Published (Last):11.10.2015
ISBN:376-7-15578-604-8
Distribution:Free* [*Registration Required]
Uploaded by: CHRISSY

74701 downloads 93651 Views 16.70MB PDF Size Report


C Language Books In Hindi Pdf

C Language in Hindi: वास्‍तव में आज जितनी भी Modern Programming Languages उपलब्‍ध हैं, वे सभी “C” Language पर ही आधारित हैं।. enough understanding on C programming language from where you can take Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain. Here I put some best C++ Hindi Tutorial Video and C++. Hindi Pdf for download. Download C++ Programming. Language Tutorial in Hindi Notes, Books, Ebook.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy. See our Privacy Policy and User Agreement for details. Published on Nov 19, SlideShare Explore Search You.

C is often used in low-level systems programming where escapes from the type system may be necessary. The compiler attempts to ensure type correctness of most expressions, but the programmer can override the checks in various ways, either by using a type cast to explicitly convert a value from one type to another, or by using pointers or unions to reinterpret the underlying bits of a data object in some other way.

Some find C's declaration syntax unintuitive, particularly for function pointers. Ritchie's idea was to declare identifiers in contexts resembling their use: C's usual arithmetic conversions allow for efficient code to be generated, but can sometimes produce unexpected results.

For example, a comparison of signed and unsigned integers of equal width requires a conversion of the signed value to unsigned. This can generate unexpected results if the signed value is negative. C supports the use of pointers , a type of reference that records the address or location of an object or function in memory.

Pointers can be dereferenced to access data stored at the address pointed to, or to invoke a pointed-to function.

Pointers can be manipulated using assignment or pointer arithmetic.

The run-time representation of a pointer value is typically a raw memory address perhaps augmented by an offset-within-word field , but since a pointer's type includes the type of the thing pointed to, expressions including pointers can be type-checked at compile time. Pointer arithmetic is automatically scaled by the size of the pointed-to data type. Pointers are used for many purposes in C.

Text strings are commonly manipulated using pointers into arrays of characters. Dynamic memory allocation is performed using pointers. Many data types, such as trees , are commonly implemented as dynamically allocated struct objects linked together using pointers.

Pointers to functions are useful for passing functions as arguments to higher-order functions such as qsort or bsearch or as callbacks to be invoked by event handlers. A null pointer value explicitly points to no valid location.

C in Hindi

Dereferencing a null pointer value is undefined, often resulting in a segmentation fault. Null pointer values are useful for indicating special cases such as no "next" pointer in the final node of a linked list , or as an error indication from functions returning pointers. In appropriate contexts in source code, such as for assigning to a pointer variable, a null pointer constant can be written as 0 , with or without explicit casting to a pointer type, or as the NULL macro defined by several standard headers.

In conditional contexts, null pointer values evaluate to false, while all other pointer values evaluate to true. Since the size and type of the pointed-to object is not known, void pointers cannot be dereferenced, nor is pointer arithmetic on them allowed, although they can easily be and in many contexts implicitly are converted to and from any other object pointer type. Careless use of pointers is potentially dangerous. Because they are typically unchecked, a pointer variable can be made to point to any arbitrary location, which can cause undesirable effects.

Although properly used pointers point to safe places, they can be made to point to unsafe places by using invalid pointer arithmetic ; the objects they point to may continue to be used after deallocation dangling pointers ; they may be used without having been initialized wild pointers ; or they may be directly assigned an unsafe value using a cast, union, or through another corrupt pointer.

In general, C is permissive in allowing manipulation of and conversion between pointer types, although compilers typically provide options for various levels of checking. Some other programming languages address these problems by using more restrictive reference types.

Array types in C are traditionally of a fixed, static size specified at compile time. The more recent C99 standard also allows a form of variable-length arrays.

C language in hindi (cलेग्वेज इन हिंदी )

However, it is also possible to allocate a block of memory of arbitrary size at run-time, using the standard library's malloc function, and treat it as an array. C's unification of arrays and pointers means that declared arrays and these dynamically allocated simulated arrays are virtually interchangeable. Since arrays are always accessed in effect via pointers, array accesses are typically not checked against the underlying array size, although some compilers may provide bounds checking as an option.

If bounds checking is desired, it must be done manually.

C does not have a special provision for declaring multi-dimensional arrays , but rather relies on recursion within the type system to declare arrays of arrays, which effectively accomplishes the same thing. The index values of the resulting "multi-dimensional array" can be thought of as increasing in row-major order.

Multi-dimensional arrays are commonly used in numerical algorithms mainly from applied linear algebra to store matrices. The structure of the C array is well suited to this particular task.

However, since arrays are passed merely as pointers, the bounds of the array must be known fixed values or else explicitly passed to any subroutine that requires them, and dynamically sized arrays of arrays cannot be accessed using double indexing. A workaround for this is to allocate the array with an additional "row vector" of pointers to the columns.

C99 introduced "variable-length arrays" which address some, but not all, of the issues with ordinary C arrays. Furthermore, in most expression contexts a notable exception is as operand of sizeof , the name of an array is automatically converted to a pointer to the array's first element.

This implies that an array is never copied as a whole when named as an argument to a function, but rather only the address of its first element is passed. Therefore, although function calls in C use pass-by-value semantics, arrays are in effect passed by reference.

The latter only applies to array names: However, arrays created by dynamic allocation are accessed by pointers rather than true array variables, so they suffer from the same sizeof issues as array pointers.

Thus, despite this apparent equivalence between array and pointer variables, there is still a distinction to be made between them. Even though the name of an array is, in most expression contexts, converted into a pointer to its first element , this pointer does not itself occupy any storage; the array name is not an l-value , and its address is a constant, unlike a pointer variable.

Consequently, what an array "points to" cannot be changed, and it is impossible to assign a new address to an array name. Array contents may be copied, however, by using the memcpy function, or by accessing the individual elements. One of the most important functions of a programming language is to provide facilities for managing memory and the objects that are stored in memory.

C provides three distinct ways to allocate memory for objects: These three approaches are appropriate in different situations and have various trade-offs. For example, static memory allocation has little allocation overhead, automatic allocation may involve slightly more overhead, and dynamic memory allocation can potentially have a great deal of overhead for both allocation and deallocation.

The persistent nature of static objects is useful for maintaining state information across function calls, automatic allocation is easy to use but stack space is typically much more limited and transient than either static memory or heap space, and dynamic memory allocation allows convenient allocation of objects whose size is known only at run-time. Most C programs make extensive use of all three. Where possible, automatic or static allocation is usually simplest because the storage is managed by the compiler, freeing the programmer of the potentially error-prone chore of manually allocating and releasing storage.

However, many data structures can change in size at runtime, and since static allocations and automatic allocations before C99 must have a fixed size at compile-time, there are many situations in which dynamic allocation is necessary.

See the article on malloc for an example of dynamically allocated arrays. Unlike automatic allocation, which can fail at run time with uncontrolled consequences, the dynamic allocation functions return an indication in the form of a null pointer value when the required storage cannot be allocated. Static allocation that is too large is usually detected by the linker or loader , before the program can even begin execution.

Unless otherwise specified, static objects contain zero or null pointer values upon program startup. Automatically and dynamically allocated objects are initialized only if an initial value is explicitly specified; otherwise they initially have indeterminate values typically, whatever bit pattern happens to be present in the storage , which might not even represent a valid value for that type. If the program attempts to access an uninitialized value, the results are undefined.

Many modern compilers try to detect and warn about this problem, but both false positives and false negatives can occur. Another issue is that heap memory allocation has to be synchronized with its actual usage in any program in order for it to be reused as much as possible.

The Arduino Playground

For example, if the only pointer to a heap memory allocation goes out of scope or has its value overwritten before free is called, then that memory cannot be recovered for later reuse and is essentially lost to the program, a phenomenon known as a memory leak.

Conversely, it is possible for memory to be freed but continue to be referenced, leading to unpredictable results. Typically, the symptoms will appear in a portion of the program far removed from the actual error, making it difficult to track down the problem. Such issues are ameliorated in languages with automatic garbage collection.

The C programming language uses libraries as its primary method of extension. In C, a library is a set of functions contained within a single "archive" file. Each library typically has a header file , which contains the prototypes of the functions contained within the library that may be used by a program, and declarations of special data types and macro symbols used with these functions.

In order for a program to use a library, it must include the library's header file, and the library must be linked with the program, which in many cases requires compiler flags e. The most common C library is the C standard library , which is specified by the ISO and ANSI C standards and comes with every C implementation implementations which target limited environments such as embedded systems may provide only a subset of the standard library.

This library supports stream input and output, memory allocation, mathematics, character strings, and time values. Several separate standard headers for example, stdio. Another common set of C library functions are those used by applications specifically targeted for Unix and Unix-like systems, especially functions which provide an interface to the kernel.

Since many programs have been written in C, there are a wide variety of other libraries available. Libraries are often written in C because C compilers generate efficient object code ; programmers then create interfaces to the library so that the routines can be used from higher-level languages like Java , Perl , and Python. A stream is from this perspective a data flow that is independent of devices, while a file is a concrete device.

In the C standard library, a buffer a memory area or queue is temporarily used to store data before it's sent to the final destination. This reduces the time spent waiting for slower devices, for example a hard drive or solid state drive. A number of tools have been developed to help C programmers find and fix statements with undefined behavior or possibly erroneous expressions, with greater rigor than that provided by the compiler.

The tool lint was the first such, leading to many others. Automated source code checking and auditing are beneficial in any language, and for C many such tools exist, such as Lint. A common practice is to use Lint to detect questionable code when a program is first written. Once a program passes Lint, it is then compiled using the C compiler. Also, many compilers can optionally warn about syntactically valid constructs that are likely to actually be errors.

MISRA C is a proprietary set of guidelines to avoid such questionable code, developed for embedded systems. There are also compilers, libraries, and operating system level mechanisms for performing actions that are not a standard part of C, such as bounds checking for arrays, detection of buffer overflow , serialization , dynamic memory tracking, and automatic garbage collection.

Tools such as Purify or Valgrind and linking with libraries containing special versions of the memory allocation functions can help uncover runtime errors in memory usage. C is widely used for system programming in implementing operating systems and embedded system applications, [37] because C code, when written for portability, can be used for most purposes, yet when needed, system-specific code can be used to access specific hardware addresses and to perform type punning to match externally imposed interface requirements, with a low run-time demand on system resources.

C can also be used for website programming using CGI as a "gateway" for information between the Web application, the server, and the browser. One consequence of C's wide availability and efficiency is that compilers , libraries and interpreters of other programming languages are often implemented in C.

Because the layer of abstraction is thin and the overhead is low, C enables programmers to create efficient implementations of algorithms and data structures, useful for computationally intense programs. C is sometimes used as an intermediate language by implementations of other languages. Comments are selectively moderated so please do not spam.

Top Ads. Label Links Tutorials. Freebies eBooks Icons Themes. Programming , Tutorials. Posted by sofwarewiki. Like to share? Newer Post Older Post Home item. Singapore Event Company November 16, at 4: Muni kumar Awasthi , Student at csjm university at None at present. Sanjay Shukla. Raj Bhardwaj , Attended M. B Institute of Management and Technology. Show More. No Downloads. Views Total views.

Actions Shares. Embeds 0 No embeds. No notes for slide. C in Hindi BccFalna. You just clipped your first slide! Clipping is a handy way to collect important slides you want to go back to later.

Related articles:


Copyright © 2019 terney.info. All rights reserved.
DMCA |Contact Us